This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a finite domain is finitely supported. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fidmfisupp.1 | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝑅 ) | |
| fidmfisupp.2 | ⊢ ( 𝜑 → 𝐷 ∈ Fin ) | ||
| fidmfisupp.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| Assertion | fidmfisupp | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidmfisupp.1 | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝑅 ) | |
| 2 | fidmfisupp.2 | ⊢ ( 𝜑 → 𝐷 ∈ Fin ) | |
| 3 | fidmfisupp.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 4 | 1 2 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 5 | suppimacnv | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) | |
| 6 | 4 3 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 7 | 2 1 | fisuppfi | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
| 8 | 6 7 | eqeltrd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 9 | 1 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 10 | funisfsupp | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) | |
| 11 | 9 4 3 10 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
| 12 | 8 11 | mpbird | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |