This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fdomne0 | |- ( ( F : X --> Y /\ X =/= (/) ) -> ( F =/= (/) /\ Y =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0dom0 | |- ( F : X --> Y -> ( X = (/) <-> F = (/) ) ) |
|
| 2 | 1 | necon3bid | |- ( F : X --> Y -> ( X =/= (/) <-> F =/= (/) ) ) |
| 3 | 2 | biimpa | |- ( ( F : X --> Y /\ X =/= (/) ) -> F =/= (/) ) |
| 4 | feq3 | |- ( Y = (/) -> ( F : X --> Y <-> F : X --> (/) ) ) |
|
| 5 | f00 | |- ( F : X --> (/) <-> ( F = (/) /\ X = (/) ) ) |
|
| 6 | 5 | simprbi | |- ( F : X --> (/) -> X = (/) ) |
| 7 | 4 6 | biimtrdi | |- ( Y = (/) -> ( F : X --> Y -> X = (/) ) ) |
| 8 | nne | |- ( -. X =/= (/) <-> X = (/) ) |
|
| 9 | 7 8 | imbitrrdi | |- ( Y = (/) -> ( F : X --> Y -> -. X =/= (/) ) ) |
| 10 | imnan | |- ( ( F : X --> Y -> -. X =/= (/) ) <-> -. ( F : X --> Y /\ X =/= (/) ) ) |
|
| 11 | 9 10 | sylib | |- ( Y = (/) -> -. ( F : X --> Y /\ X =/= (/) ) ) |
| 12 | 11 | necon2ai | |- ( ( F : X --> Y /\ X =/= (/) ) -> Y =/= (/) ) |
| 13 | 3 12 | jca | |- ( ( F : X --> Y /\ X =/= (/) ) -> ( F =/= (/) /\ Y =/= (/) ) ) |