This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f0dom0 | |- ( F : X --> Y -> ( X = (/) <-> F = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 | |- ( X = (/) -> ( F : X --> Y <-> F : (/) --> Y ) ) |
|
| 2 | f0bi | |- ( F : (/) --> Y <-> F = (/) ) |
|
| 3 | 2 | biimpi | |- ( F : (/) --> Y -> F = (/) ) |
| 4 | 1 3 | biimtrdi | |- ( X = (/) -> ( F : X --> Y -> F = (/) ) ) |
| 5 | 4 | com12 | |- ( F : X --> Y -> ( X = (/) -> F = (/) ) ) |
| 6 | feq1 | |- ( F = (/) -> ( F : X --> Y <-> (/) : X --> Y ) ) |
|
| 7 | fdm | |- ( (/) : X --> Y -> dom (/) = X ) |
|
| 8 | dm0 | |- dom (/) = (/) |
|
| 9 | 7 8 | eqtr3di | |- ( (/) : X --> Y -> X = (/) ) |
| 10 | 6 9 | biimtrdi | |- ( F = (/) -> ( F : X --> Y -> X = (/) ) ) |
| 11 | 10 | com12 | |- ( F : X --> Y -> ( F = (/) -> X = (/) ) ) |
| 12 | 5 11 | impbid | |- ( F : X --> Y -> ( X = (/) <-> F = (/) ) ) |