This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1sn2g | |- ( ( A e. V /\ F : { A } --> B ) -> F : { A } -1-1-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsn2g | |- ( A e. V -> ( F : { A } --> B <-> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) ) |
|
| 2 | 1 | biimpa | |- ( ( A e. V /\ F : { A } --> B ) -> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) |
| 3 | 2 | simpld | |- ( ( A e. V /\ F : { A } --> B ) -> ( F ` A ) e. B ) |
| 4 | f1sng | |- ( ( A e. V /\ ( F ` A ) e. B ) -> { <. A , ( F ` A ) >. } : { A } -1-1-> B ) |
|
| 5 | 3 4 | syldan | |- ( ( A e. V /\ F : { A } --> B ) -> { <. A , ( F ` A ) >. } : { A } -1-1-> B ) |
| 6 | f1eq1 | |- ( F = { <. A , ( F ` A ) >. } -> ( F : { A } -1-1-> B <-> { <. A , ( F ` A ) >. } : { A } -1-1-> B ) ) |
|
| 7 | 2 6 | simpl2im | |- ( ( A e. V /\ F : { A } --> B ) -> ( F : { A } -1-1-> B <-> { <. A , ( F ` A ) >. } : { A } -1-1-> B ) ) |
| 8 | 5 7 | mpbird | |- ( ( A e. V /\ F : { A } --> B ) -> F : { A } -1-1-> B ) |