This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcfneii | |- ( ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ ( A e. ( ( J fClusf L ) ` F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. L ) ) -> ( N i^i ( F " S ) ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcfnei | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( A e. ( ( J fClusf L ) ` F ) <-> ( A e. X /\ A. n e. ( ( nei ` J ) ` { A } ) A. s e. L ( n i^i ( F " s ) ) =/= (/) ) ) ) |
|
| 2 | ineq1 | |- ( n = N -> ( n i^i ( F " s ) ) = ( N i^i ( F " s ) ) ) |
|
| 3 | 2 | neeq1d | |- ( n = N -> ( ( n i^i ( F " s ) ) =/= (/) <-> ( N i^i ( F " s ) ) =/= (/) ) ) |
| 4 | imaeq2 | |- ( s = S -> ( F " s ) = ( F " S ) ) |
|
| 5 | 4 | ineq2d | |- ( s = S -> ( N i^i ( F " s ) ) = ( N i^i ( F " S ) ) ) |
| 6 | 5 | neeq1d | |- ( s = S -> ( ( N i^i ( F " s ) ) =/= (/) <-> ( N i^i ( F " S ) ) =/= (/) ) ) |
| 7 | 3 6 | rspc2v | |- ( ( N e. ( ( nei ` J ) ` { A } ) /\ S e. L ) -> ( A. n e. ( ( nei ` J ) ` { A } ) A. s e. L ( n i^i ( F " s ) ) =/= (/) -> ( N i^i ( F " S ) ) =/= (/) ) ) |
| 8 | 7 | ex | |- ( N e. ( ( nei ` J ) ` { A } ) -> ( S e. L -> ( A. n e. ( ( nei ` J ) ` { A } ) A. s e. L ( n i^i ( F " s ) ) =/= (/) -> ( N i^i ( F " S ) ) =/= (/) ) ) ) |
| 9 | 8 | com3r | |- ( A. n e. ( ( nei ` J ) ` { A } ) A. s e. L ( n i^i ( F " s ) ) =/= (/) -> ( N e. ( ( nei ` J ) ` { A } ) -> ( S e. L -> ( N i^i ( F " S ) ) =/= (/) ) ) ) |
| 10 | 9 | adantl | |- ( ( A e. X /\ A. n e. ( ( nei ` J ) ` { A } ) A. s e. L ( n i^i ( F " s ) ) =/= (/) ) -> ( N e. ( ( nei ` J ) ` { A } ) -> ( S e. L -> ( N i^i ( F " S ) ) =/= (/) ) ) ) |
| 11 | 1 10 | biimtrdi | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( A e. ( ( J fClusf L ) ` F ) -> ( N e. ( ( nei ` J ) ` { A } ) -> ( S e. L -> ( N i^i ( F " S ) ) =/= (/) ) ) ) ) |
| 12 | 11 | 3imp2 | |- ( ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ ( A e. ( ( J fClusf L ) ` F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. L ) ) -> ( N i^i ( F " S ) ) =/= (/) ) |