This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of falseral0 as of 16-Feb-2026. (Contributed by AV, 30-Oct-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | falseral0OLD | |- ( ( A. x -. ph /\ A. x e. A ph ) -> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
| 2 | 19.26 | |- ( A. x ( -. ph /\ ( x e. A -> ph ) ) <-> ( A. x -. ph /\ A. x ( x e. A -> ph ) ) ) |
|
| 3 | con3 | |- ( ( x e. A -> ph ) -> ( -. ph -> -. x e. A ) ) |
|
| 4 | 3 | impcom | |- ( ( -. ph /\ ( x e. A -> ph ) ) -> -. x e. A ) |
| 5 | 4 | alimi | |- ( A. x ( -. ph /\ ( x e. A -> ph ) ) -> A. x -. x e. A ) |
| 6 | alnex | |- ( A. x -. x e. A <-> -. E. x x e. A ) |
|
| 7 | 5 6 | sylib | |- ( A. x ( -. ph /\ ( x e. A -> ph ) ) -> -. E. x x e. A ) |
| 8 | notnotb | |- ( A = (/) <-> -. -. A = (/) ) |
|
| 9 | neq0 | |- ( -. A = (/) <-> E. x x e. A ) |
|
| 10 | 8 9 | xchbinx | |- ( A = (/) <-> -. E. x x e. A ) |
| 11 | 7 10 | sylibr | |- ( A. x ( -. ph /\ ( x e. A -> ph ) ) -> A = (/) ) |
| 12 | 2 11 | sylbir | |- ( ( A. x -. ph /\ A. x ( x e. A -> ph ) ) -> A = (/) ) |
| 13 | 1 12 | sylan2b | |- ( ( A. x -. ph /\ A. x e. A ph ) -> A = (/) ) |