This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the falling factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fallfacp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac ( 𝑁 + 1 ) ) = ( ( 𝐴 FallFac 𝑁 ) · ( 𝐴 − 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 3 | 1cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 4 | 2 3 | pncand | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 5 | 4 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) ) |
| 6 | 5 | prodeq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐴 − 𝑘 ) = ∏ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐴 − 𝑘 ) ) |
| 7 | elnn0uz | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 8 | 7 | biimpi | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 10 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) | |
| 11 | 10 | nn0cnd | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℂ ) |
| 12 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 − 𝑘 ) ∈ ℂ ) | |
| 13 | 11 12 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 − 𝑘 ) ∈ ℂ ) |
| 14 | 13 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 − 𝑘 ) ∈ ℂ ) |
| 15 | oveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝐴 − 𝑘 ) = ( 𝐴 − 𝑁 ) ) | |
| 16 | 9 14 15 | fprodm1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐴 − 𝑘 ) = ( ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) · ( 𝐴 − 𝑁 ) ) ) |
| 17 | 6 16 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐴 − 𝑘 ) = ( ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) · ( 𝐴 − 𝑁 ) ) ) |
| 18 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 19 | fallfacval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ0 ) → ( 𝐴 FallFac ( 𝑁 + 1 ) ) = ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐴 − 𝑘 ) ) | |
| 20 | 18 19 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac ( 𝑁 + 1 ) ) = ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐴 − 𝑘 ) ) |
| 21 | fallfacval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac 𝑁 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) ) | |
| 22 | 21 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 FallFac 𝑁 ) · ( 𝐴 − 𝑁 ) ) = ( ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 − 𝑘 ) · ( 𝐴 − 𝑁 ) ) ) |
| 23 | 17 20 22 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac ( 𝑁 + 1 ) ) = ( ( 𝐴 FallFac 𝑁 ) · ( 𝐴 − 𝑁 ) ) ) |