This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1sn2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : { 𝐴 } ⟶ 𝐵 ) → 𝐹 : { 𝐴 } –1-1→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsn2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : { 𝐴 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) ) | |
| 2 | 1 | biimpa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : { 𝐴 } ⟶ 𝐵 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
| 3 | 2 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : { 𝐴 } ⟶ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
| 4 | f1sng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } : { 𝐴 } –1-1→ 𝐵 ) | |
| 5 | 3 4 | syldan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : { 𝐴 } ⟶ 𝐵 ) → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } : { 𝐴 } –1-1→ 𝐵 ) |
| 6 | f1eq1 | ⊢ ( 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } → ( 𝐹 : { 𝐴 } –1-1→ 𝐵 ↔ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } : { 𝐴 } –1-1→ 𝐵 ) ) | |
| 7 | 2 6 | simpl2im | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : { 𝐴 } ⟶ 𝐵 ) → ( 𝐹 : { 𝐴 } –1-1→ 𝐵 ↔ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } : { 𝐴 } –1-1→ 𝐵 ) ) |
| 8 | 5 7 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : { 𝐴 } ⟶ 𝐵 ) → 𝐹 : { 𝐴 } –1-1→ 𝐵 ) |