This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f102g | |- ( ( A = (/) /\ F : A --> B ) -> F : A -1-1-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 | |- ( A = (/) -> ( F : A --> B <-> F : (/) --> B ) ) |
|
| 2 | 1 | biimpa | |- ( ( A = (/) /\ F : A --> B ) -> F : (/) --> B ) |
| 3 | f0bi | |- ( F : (/) --> B <-> F = (/) ) |
|
| 4 | f10 | |- (/) : (/) -1-1-> B |
|
| 5 | f1eq1 | |- ( F = (/) -> ( F : (/) -1-1-> B <-> (/) : (/) -1-1-> B ) ) |
|
| 6 | 4 5 | mpbiri | |- ( F = (/) -> F : (/) -1-1-> B ) |
| 7 | 3 6 | sylbi | |- ( F : (/) --> B -> F : (/) -1-1-> B ) |
| 8 | 2 7 | syl | |- ( ( A = (/) /\ F : A --> B ) -> F : (/) -1-1-> B ) |
| 9 | f1eq2 | |- ( A = (/) -> ( F : A -1-1-> B <-> F : (/) -1-1-> B ) ) |
|
| 10 | 9 | adantr | |- ( ( A = (/) /\ F : A --> B ) -> ( F : A -1-1-> B <-> F : (/) -1-1-> B ) ) |
| 11 | 8 10 | mpbird | |- ( ( A = (/) /\ F : A --> B ) -> F : A -1-1-> B ) |