This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define exclusive disjunction (logical "xor"). Return true if either the left or right, but not both, are true. After we define the constant true T. ( df-tru ) and the constant false F. ( df-fal ), we will be able to prove these truth table values: ( ( T. \/_ T. ) <-> F. ) ( truxortru ), ( ( T. \/_ F. ) <-> T. ) ( truxorfal ), ( ( F. \/_ T. ) <-> T. ) ( falxortru ), and ( ( F. \/_ F. ) <-> F. ) ( falxorfal ). Contrast with /\ ( df-an ), \/ ( df-or ), -> ( wi ), and -/\ ( df-nan ). (Contributed by FL, 22-Nov-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xor | |- ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | wph | |- ph |
|
| 1 | wps | |- ps |
|
| 2 | 0 1 | wxo | |- ( ph \/_ ps ) |
| 3 | 0 1 | wb | |- ( ph <-> ps ) |
| 4 | 3 | wn | |- -. ( ph <-> ps ) |
| 5 | 2 4 | wb | |- ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) ) |