This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvconst0ci.1 | |- B e. _V |
|
| fvconst0ci.2 | |- Y = ( ( A X. { B } ) ` X ) |
||
| Assertion | fvconst0ci | |- ( Y = (/) \/ Y = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst0ci.1 | |- B e. _V |
|
| 2 | fvconst0ci.2 | |- Y = ( ( A X. { B } ) ` X ) |
|
| 3 | dmxpss | |- dom ( A X. { B } ) C_ A |
|
| 4 | 3 | sseli | |- ( X e. dom ( A X. { B } ) -> X e. A ) |
| 5 | 1 | fvconst2 | |- ( X e. A -> ( ( A X. { B } ) ` X ) = B ) |
| 6 | 4 5 | syl | |- ( X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = B ) |
| 7 | 2 6 | eqtrid | |- ( X e. dom ( A X. { B } ) -> Y = B ) |
| 8 | 7 | olcd | |- ( X e. dom ( A X. { B } ) -> ( Y = (/) \/ Y = B ) ) |
| 9 | ndmfv | |- ( -. X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = (/) ) |
|
| 10 | 2 9 | eqtrid | |- ( -. X e. dom ( A X. { B } ) -> Y = (/) ) |
| 11 | 10 | orcd | |- ( -. X e. dom ( A X. { B } ) -> ( Y = (/) \/ Y = B ) ) |
| 12 | 8 11 | pm2.61i | |- ( Y = (/) \/ Y = B ) |