This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006) (Proof shortened by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocnvfv3 | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( `' F ` C ) = ( iota_ x e. A ( F ` x ) = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnvdm | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( `' F ` C ) e. A ) |
|
| 2 | f1ocnvfvb | |- ( ( F : A -1-1-onto-> B /\ x e. A /\ C e. B ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) |
|
| 3 | 2 | 3expa | |- ( ( ( F : A -1-1-onto-> B /\ x e. A ) /\ C e. B ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) |
| 4 | 3 | an32s | |- ( ( ( F : A -1-1-onto-> B /\ C e. B ) /\ x e. A ) -> ( ( F ` x ) = C <-> ( `' F ` C ) = x ) ) |
| 5 | eqcom | |- ( x = ( `' F ` C ) <-> ( `' F ` C ) = x ) |
|
| 6 | 4 5 | bitr4di | |- ( ( ( F : A -1-1-onto-> B /\ C e. B ) /\ x e. A ) -> ( ( F ` x ) = C <-> x = ( `' F ` C ) ) ) |
| 7 | 1 6 | riota5 | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( iota_ x e. A ( F ` x ) = C ) = ( `' F ` C ) ) |
| 8 | 7 | eqcomd | |- ( ( F : A -1-1-onto-> B /\ C e. B ) -> ( `' F ` C ) = ( iota_ x e. A ( F ` x ) = C ) ) |