This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function from at least two elements is not one-to-one. (Contributed by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nf1const | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> -. F : A -1-1-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( X e. A /\ Y e. A /\ X =/= Y ) -> X e. A ) |
|
| 2 | simp2 | |- ( ( X e. A /\ Y e. A /\ X =/= Y ) -> Y e. A ) |
|
| 3 | fvconst | |- ( ( F : A --> { B } /\ X e. A ) -> ( F ` X ) = B ) |
|
| 4 | 1 3 | sylan2 | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> ( F ` X ) = B ) |
| 5 | fvconst | |- ( ( F : A --> { B } /\ Y e. A ) -> ( F ` Y ) = B ) |
|
| 6 | 2 5 | sylan2 | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> ( F ` Y ) = B ) |
| 7 | 4 6 | eqtr4d | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> ( F ` X ) = ( F ` Y ) ) |
| 8 | neneq | |- ( X =/= Y -> -. X = Y ) |
|
| 9 | 8 | 3ad2ant3 | |- ( ( X e. A /\ Y e. A /\ X =/= Y ) -> -. X = Y ) |
| 10 | 9 | adantl | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> -. X = Y ) |
| 11 | 7 10 | jcnd | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> -. ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) |
| 12 | fveqeq2 | |- ( x = X -> ( ( F ` x ) = ( F ` y ) <-> ( F ` X ) = ( F ` y ) ) ) |
|
| 13 | eqeq1 | |- ( x = X -> ( x = y <-> X = y ) ) |
|
| 14 | 12 13 | imbi12d | |- ( x = X -> ( ( ( F ` x ) = ( F ` y ) -> x = y ) <-> ( ( F ` X ) = ( F ` y ) -> X = y ) ) ) |
| 15 | 14 | notbid | |- ( x = X -> ( -. ( ( F ` x ) = ( F ` y ) -> x = y ) <-> -. ( ( F ` X ) = ( F ` y ) -> X = y ) ) ) |
| 16 | fveq2 | |- ( y = Y -> ( F ` y ) = ( F ` Y ) ) |
|
| 17 | 16 | eqeq2d | |- ( y = Y -> ( ( F ` X ) = ( F ` y ) <-> ( F ` X ) = ( F ` Y ) ) ) |
| 18 | eqeq2 | |- ( y = Y -> ( X = y <-> X = Y ) ) |
|
| 19 | 17 18 | imbi12d | |- ( y = Y -> ( ( ( F ` X ) = ( F ` y ) -> X = y ) <-> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |
| 20 | 19 | notbid | |- ( y = Y -> ( -. ( ( F ` X ) = ( F ` y ) -> X = y ) <-> -. ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |
| 21 | 15 20 | rspc2ev | |- ( ( X e. A /\ Y e. A /\ -. ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) -> E. x e. A E. y e. A -. ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 22 | 1 2 11 21 | syl2an23an | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> E. x e. A E. y e. A -. ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 23 | rexnal2 | |- ( E. x e. A E. y e. A -. ( ( F ` x ) = ( F ` y ) -> x = y ) <-> -. A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
|
| 24 | 22 23 | sylib | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> -. A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 25 | 24 | olcd | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> ( -. F : A --> C \/ -. A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 26 | ianor | |- ( -. ( F : A --> C /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( -. F : A --> C \/ -. A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 27 | dff13 | |- ( F : A -1-1-> C <-> ( F : A --> C /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 28 | 26 27 | xchnxbir | |- ( -. F : A -1-1-> C <-> ( -. F : A --> C \/ -. A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 29 | 25 28 | sylibr | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> -. F : A -1-1-> C ) |