This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of f1oabexg as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1oabexg.1 | |- F = { f | ( f : A -1-1-onto-> B /\ ph ) } |
|
| Assertion | f1oabexgOLD | |- ( ( A e. C /\ B e. D ) -> F e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oabexg.1 | |- F = { f | ( f : A -1-1-onto-> B /\ ph ) } |
|
| 2 | f1of | |- ( f : A -1-1-onto-> B -> f : A --> B ) |
|
| 3 | 2 | anim1i | |- ( ( f : A -1-1-onto-> B /\ ph ) -> ( f : A --> B /\ ph ) ) |
| 4 | 3 | ss2abi | |- { f | ( f : A -1-1-onto-> B /\ ph ) } C_ { f | ( f : A --> B /\ ph ) } |
| 5 | eqid | |- { f | ( f : A --> B /\ ph ) } = { f | ( f : A --> B /\ ph ) } |
|
| 6 | 5 | fabexg | |- ( ( A e. C /\ B e. D ) -> { f | ( f : A --> B /\ ph ) } e. _V ) |
| 7 | ssexg | |- ( ( { f | ( f : A -1-1-onto-> B /\ ph ) } C_ { f | ( f : A --> B /\ ph ) } /\ { f | ( f : A --> B /\ ph ) } e. _V ) -> { f | ( f : A -1-1-onto-> B /\ ph ) } e. _V ) |
|
| 8 | 4 6 7 | sylancr | |- ( ( A e. C /\ B e. D ) -> { f | ( f : A -1-1-onto-> B /\ ph ) } e. _V ) |
| 9 | 1 8 | eqeltrid | |- ( ( A e. C /\ B e. D ) -> F e. _V ) |