This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008) (Proof shortened by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1oabexg.1 | |- F = { f | ( f : A -1-1-onto-> B /\ ph ) } |
|
| Assertion | f1oabexg | |- ( ( A e. C /\ B e. D ) -> F e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oabexg.1 | |- F = { f | ( f : A -1-1-onto-> B /\ ph ) } |
|
| 2 | elex | |- ( A e. C -> A e. _V ) |
|
| 3 | elex | |- ( B e. D -> B e. _V ) |
|
| 4 | f1of | |- ( f : A -1-1-onto-> B -> f : A --> B ) |
|
| 5 | 4 | ad2antrl | |- ( ( ( A e. _V /\ B e. _V ) /\ ( f : A -1-1-onto-> B /\ ph ) ) -> f : A --> B ) |
| 6 | simpl | |- ( ( A e. _V /\ B e. _V ) -> A e. _V ) |
|
| 7 | simpr | |- ( ( A e. _V /\ B e. _V ) -> B e. _V ) |
|
| 8 | 5 6 7 | fabexd | |- ( ( A e. _V /\ B e. _V ) -> { f | ( f : A -1-1-onto-> B /\ ph ) } e. _V ) |
| 9 | 1 8 | eqeltrid | |- ( ( A e. _V /\ B e. _V ) -> F e. _V ) |
| 10 | 2 3 9 | syl2an | |- ( ( A e. C /\ B e. D ) -> F e. _V ) |