This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of f1oabexg as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1oabexg.1 | ⊢ 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝜑 ) } | |
| Assertion | f1oabexgOLD | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝐹 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oabexg.1 | ⊢ 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝜑 ) } | |
| 2 | f1of | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 3 | 2 | anim1i | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝜑 ) → ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝜑 ) ) |
| 4 | 3 | ss2abi | ⊢ { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝜑 ) } ⊆ { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝜑 ) } |
| 5 | eqid | ⊢ { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝜑 ) } = { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝜑 ) } | |
| 6 | 5 | fabexg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝜑 ) } ∈ V ) |
| 7 | ssexg | ⊢ ( ( { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝜑 ) } ⊆ { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝜑 ) } ∧ { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝜑 ) } ∈ V ) → { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝜑 ) } ∈ V ) | |
| 8 | 4 6 7 | sylancr | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝜑 ) } ∈ V ) |
| 9 | 1 8 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝐹 ∈ V ) |