This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fiun and f1iun . Formerly part of f1iun . (Contributed by AV, 6-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fiun.1 | |- ( x = y -> B = C ) |
|
| Assertion | fiunlem | |- ( ( ( B : D --> S /\ A. y e. A ( B C_ C \/ C C_ B ) ) /\ u = B ) -> A. v e. { z | E. x e. A z = B } ( u C_ v \/ v C_ u ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fiun.1 | |- ( x = y -> B = C ) |
|
| 2 | vex | |- v e. _V |
|
| 3 | eqeq1 | |- ( z = v -> ( z = B <-> v = B ) ) |
|
| 4 | 3 | rexbidv | |- ( z = v -> ( E. x e. A z = B <-> E. x e. A v = B ) ) |
| 5 | 2 4 | elab | |- ( v e. { z | E. x e. A z = B } <-> E. x e. A v = B ) |
| 6 | 1 | eqeq2d | |- ( x = y -> ( v = B <-> v = C ) ) |
| 7 | 6 | cbvrexvw | |- ( E. x e. A v = B <-> E. y e. A v = C ) |
| 8 | r19.29 | |- ( ( A. y e. A ( B C_ C \/ C C_ B ) /\ E. y e. A v = C ) -> E. y e. A ( ( B C_ C \/ C C_ B ) /\ v = C ) ) |
|
| 9 | sseq12 | |- ( ( u = B /\ v = C ) -> ( u C_ v <-> B C_ C ) ) |
|
| 10 | 9 | ancoms | |- ( ( v = C /\ u = B ) -> ( u C_ v <-> B C_ C ) ) |
| 11 | sseq12 | |- ( ( v = C /\ u = B ) -> ( v C_ u <-> C C_ B ) ) |
|
| 12 | 10 11 | orbi12d | |- ( ( v = C /\ u = B ) -> ( ( u C_ v \/ v C_ u ) <-> ( B C_ C \/ C C_ B ) ) ) |
| 13 | 12 | biimprcd | |- ( ( B C_ C \/ C C_ B ) -> ( ( v = C /\ u = B ) -> ( u C_ v \/ v C_ u ) ) ) |
| 14 | 13 | expdimp | |- ( ( ( B C_ C \/ C C_ B ) /\ v = C ) -> ( u = B -> ( u C_ v \/ v C_ u ) ) ) |
| 15 | 14 | rexlimivw | |- ( E. y e. A ( ( B C_ C \/ C C_ B ) /\ v = C ) -> ( u = B -> ( u C_ v \/ v C_ u ) ) ) |
| 16 | 15 | imp | |- ( ( E. y e. A ( ( B C_ C \/ C C_ B ) /\ v = C ) /\ u = B ) -> ( u C_ v \/ v C_ u ) ) |
| 17 | 8 16 | sylan | |- ( ( ( A. y e. A ( B C_ C \/ C C_ B ) /\ E. y e. A v = C ) /\ u = B ) -> ( u C_ v \/ v C_ u ) ) |
| 18 | 17 | an32s | |- ( ( ( A. y e. A ( B C_ C \/ C C_ B ) /\ u = B ) /\ E. y e. A v = C ) -> ( u C_ v \/ v C_ u ) ) |
| 19 | 18 | adantlll | |- ( ( ( ( B : D --> S /\ A. y e. A ( B C_ C \/ C C_ B ) ) /\ u = B ) /\ E. y e. A v = C ) -> ( u C_ v \/ v C_ u ) ) |
| 20 | 7 19 | sylan2b | |- ( ( ( ( B : D --> S /\ A. y e. A ( B C_ C \/ C C_ B ) ) /\ u = B ) /\ E. x e. A v = B ) -> ( u C_ v \/ v C_ u ) ) |
| 21 | 5 20 | sylan2b | |- ( ( ( ( B : D --> S /\ A. y e. A ( B C_ C \/ C C_ B ) ) /\ u = B ) /\ v e. { z | E. x e. A z = B } ) -> ( u C_ v \/ v C_ u ) ) |
| 22 | 21 | ralrimiva | |- ( ( ( B : D --> S /\ A. y e. A ( B C_ C \/ C C_ B ) ) /\ u = B ) -> A. v e. { z | E. x e. A z = B } ( u C_ v \/ v C_ u ) ) |