This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjunction inside and outside of a substitution are equivalent. Compare 19.26 . (Contributed by NM, 14-May-1993) (Proof shortened by Steven Nguyen, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sban | |- ( [ y / x ] ( ph /\ ps ) <-> ( [ y / x ] ph /\ [ y / x ] ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
| 2 | 1 | sbimi | |- ( [ y / x ] ( ph /\ ps ) -> [ y / x ] ph ) |
| 3 | simpr | |- ( ( ph /\ ps ) -> ps ) |
|
| 4 | 3 | sbimi | |- ( [ y / x ] ( ph /\ ps ) -> [ y / x ] ps ) |
| 5 | 2 4 | jca | |- ( [ y / x ] ( ph /\ ps ) -> ( [ y / x ] ph /\ [ y / x ] ps ) ) |
| 6 | pm3.2 | |- ( ph -> ( ps -> ( ph /\ ps ) ) ) |
|
| 7 | 6 | sb2imi | |- ( [ y / x ] ph -> ( [ y / x ] ps -> [ y / x ] ( ph /\ ps ) ) ) |
| 8 | 7 | imp | |- ( ( [ y / x ] ph /\ [ y / x ] ps ) -> [ y / x ] ( ph /\ ps ) ) |
| 9 | 5 8 | impbii | |- ( [ y / x ] ( ph /\ ps ) <-> ( [ y / x ] ph /\ [ y / x ] ps ) ) |