This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a nonzero complex number raised to the negative of an integer power. (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnegz | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 | |- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
|
| 2 | expneg | |- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
|
| 3 | 2 | ex | |- ( A e. CC -> ( N e. NN0 -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 4 | 3 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ N e. RR ) -> ( N e. NN0 -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 5 | simpll | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> A e. CC ) |
|
| 6 | simprl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> N e. RR ) |
|
| 7 | 6 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> N e. CC ) |
| 8 | simprr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> -u N e. NN0 ) |
|
| 9 | expneg2 | |- ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
|
| 10 | 5 7 8 9 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 11 | 10 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( 1 / ( A ^ N ) ) = ( 1 / ( 1 / ( A ^ -u N ) ) ) ) |
| 12 | expcl | |- ( ( A e. CC /\ -u N e. NN0 ) -> ( A ^ -u N ) e. CC ) |
|
| 13 | 12 | ad2ant2rl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( A ^ -u N ) e. CC ) |
| 14 | simplr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> A =/= 0 ) |
|
| 15 | 8 | nn0zd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> -u N e. ZZ ) |
| 16 | expne0i | |- ( ( A e. CC /\ A =/= 0 /\ -u N e. ZZ ) -> ( A ^ -u N ) =/= 0 ) |
|
| 17 | 5 14 15 16 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( A ^ -u N ) =/= 0 ) |
| 18 | 13 17 | recrecd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( 1 / ( 1 / ( A ^ -u N ) ) ) = ( A ^ -u N ) ) |
| 19 | 11 18 | eqtr2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| 20 | 19 | expr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ N e. RR ) -> ( -u N e. NN0 -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 21 | 4 20 | jaod | |- ( ( ( A e. CC /\ A =/= 0 ) /\ N e. RR ) -> ( ( N e. NN0 \/ -u N e. NN0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 22 | 21 | expimpd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 23 | 1 22 | biimtrid | |- ( ( A e. CC /\ A =/= 0 ) -> ( N e. ZZ -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 24 | 23 | 3impia | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |