This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer power with an integer base greater than 1 is greater than 1 iff the exponent is positive. (Contributed by AV, 28-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnngt1b | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( 1 < ( A ^ B ) <-> B e. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn | |- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
|
| 2 | 1 | adantr | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> A e. NN ) |
| 3 | 2 | adantr | |- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ 1 < ( A ^ B ) ) -> A e. NN ) |
| 4 | simplr | |- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ 1 < ( A ^ B ) ) -> B e. ZZ ) |
|
| 5 | simpr | |- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ 1 < ( A ^ B ) ) -> 1 < ( A ^ B ) ) |
|
| 6 | expnngt1 | |- ( ( A e. NN /\ B e. ZZ /\ 1 < ( A ^ B ) ) -> B e. NN ) |
|
| 7 | 3 4 5 6 | syl3anc | |- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ 1 < ( A ^ B ) ) -> B e. NN ) |
| 8 | 2 | nnred | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> A e. RR ) |
| 9 | 8 | adantr | |- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ B e. NN ) -> A e. RR ) |
| 10 | simpr | |- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ B e. NN ) -> B e. NN ) |
|
| 11 | eluz2gt1 | |- ( A e. ( ZZ>= ` 2 ) -> 1 < A ) |
|
| 12 | 11 | adantr | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> 1 < A ) |
| 13 | 12 | adantr | |- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ B e. NN ) -> 1 < A ) |
| 14 | expgt1 | |- ( ( A e. RR /\ B e. NN /\ 1 < A ) -> 1 < ( A ^ B ) ) |
|
| 15 | 9 10 13 14 | syl3anc | |- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ B e. NN ) -> 1 < ( A ^ B ) ) |
| 16 | 7 15 | impbida | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( 1 < ( A ^ B ) <-> B e. NN ) ) |