This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation of a nonzero complex number to an integer power. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | explog | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) = ( exp ` ( N x. ( log ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 2 | efexp | |- ( ( ( log ` A ) e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
|
| 3 | 1 2 | stoic3 | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
| 4 | eflog | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
|
| 5 | 4 | 3adant3 | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( exp ` ( log ` A ) ) = A ) |
| 6 | 5 | oveq1d | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) |
| 7 | 3 6 | eqtr2d | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) = ( exp ` ( N x. ( log ` A ) ) ) ) |