This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-mod . (Contributed by AV, 3-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-mod | |- ( ( 5 mod 3 ) = 2 /\ ( -u 7 mod 2 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3p2e5 | |- ( 3 + 2 ) = 5 |
|
| 2 | 1 | eqcomi | |- 5 = ( 3 + 2 ) |
| 3 | 2 | oveq1i | |- ( 5 mod 3 ) = ( ( 3 + 2 ) mod 3 ) |
| 4 | 2nn0 | |- 2 e. NN0 |
|
| 5 | 3nn | |- 3 e. NN |
|
| 6 | 2lt3 | |- 2 < 3 |
|
| 7 | addmodid | |- ( ( 2 e. NN0 /\ 3 e. NN /\ 2 < 3 ) -> ( ( 3 + 2 ) mod 3 ) = 2 ) |
|
| 8 | 4 5 6 7 | mp3an | |- ( ( 3 + 2 ) mod 3 ) = 2 |
| 9 | 3 8 | eqtri | |- ( 5 mod 3 ) = 2 |
| 10 | 2re | |- 2 e. RR |
|
| 11 | 2lt7 | |- 2 < 7 |
|
| 12 | 10 11 | ltneii | |- 2 =/= 7 |
| 13 | 2nn | |- 2 e. NN |
|
| 14 | 1lt2 | |- 1 < 2 |
|
| 15 | eluz2b2 | |- ( 2 e. ( ZZ>= ` 2 ) <-> ( 2 e. NN /\ 1 < 2 ) ) |
|
| 16 | 13 14 15 | mpbir2an | |- 2 e. ( ZZ>= ` 2 ) |
| 17 | 7prm | |- 7 e. Prime |
|
| 18 | dvdsprm | |- ( ( 2 e. ( ZZ>= ` 2 ) /\ 7 e. Prime ) -> ( 2 || 7 <-> 2 = 7 ) ) |
|
| 19 | 16 17 18 | mp2an | |- ( 2 || 7 <-> 2 = 7 ) |
| 20 | 12 19 | nemtbir | |- -. 2 || 7 |
| 21 | 2z | |- 2 e. ZZ |
|
| 22 | 7nn | |- 7 e. NN |
|
| 23 | 22 | nnzi | |- 7 e. ZZ |
| 24 | dvdsnegb | |- ( ( 2 e. ZZ /\ 7 e. ZZ ) -> ( 2 || 7 <-> 2 || -u 7 ) ) |
|
| 25 | 21 23 24 | mp2an | |- ( 2 || 7 <-> 2 || -u 7 ) |
| 26 | 20 25 | mtbi | |- -. 2 || -u 7 |
| 27 | znegcl | |- ( 7 e. ZZ -> -u 7 e. ZZ ) |
|
| 28 | mod2eq1n2dvds | |- ( -u 7 e. ZZ -> ( ( -u 7 mod 2 ) = 1 <-> -. 2 || -u 7 ) ) |
|
| 29 | 23 27 28 | mp2b | |- ( ( -u 7 mod 2 ) = 1 <-> -. 2 || -u 7 ) |
| 30 | 26 29 | mpbir | |- ( -u 7 mod 2 ) = 1 |
| 31 | 9 30 | pm3.2i | |- ( ( 5 mod 3 ) = 2 /\ ( -u 7 mod 2 ) = 1 ) |