This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that A ( x ) is a set expression that does not depend on x . (Contributed by Mario Carneiro, 18-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eusvnfb | |- ( E! y A. x y = A <-> ( F/_ x A /\ A e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eusvnf | |- ( E! y A. x y = A -> F/_ x A ) |
|
| 2 | euex | |- ( E! y A. x y = A -> E. y A. x y = A ) |
|
| 3 | eqvisset | |- ( y = A -> A e. _V ) |
|
| 4 | 3 | sps | |- ( A. x y = A -> A e. _V ) |
| 5 | 4 | exlimiv | |- ( E. y A. x y = A -> A e. _V ) |
| 6 | 2 5 | syl | |- ( E! y A. x y = A -> A e. _V ) |
| 7 | 1 6 | jca | |- ( E! y A. x y = A -> ( F/_ x A /\ A e. _V ) ) |
| 8 | isset | |- ( A e. _V <-> E. y y = A ) |
|
| 9 | nfcvd | |- ( F/_ x A -> F/_ x y ) |
|
| 10 | id | |- ( F/_ x A -> F/_ x A ) |
|
| 11 | 9 10 | nfeqd | |- ( F/_ x A -> F/ x y = A ) |
| 12 | 11 | nf5rd | |- ( F/_ x A -> ( y = A -> A. x y = A ) ) |
| 13 | 12 | eximdv | |- ( F/_ x A -> ( E. y y = A -> E. y A. x y = A ) ) |
| 14 | 8 13 | biimtrid | |- ( F/_ x A -> ( A e. _V -> E. y A. x y = A ) ) |
| 15 | 14 | imp | |- ( ( F/_ x A /\ A e. _V ) -> E. y A. x y = A ) |
| 16 | eusv1 | |- ( E! y A. x y = A <-> E. y A. x y = A ) |
|
| 17 | 15 16 | sylibr | |- ( ( F/_ x A /\ A e. _V ) -> E! y A. x y = A ) |
| 18 | 7 17 | impbii | |- ( E! y A. x y = A <-> ( F/_ x A /\ A e. _V ) ) |