This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that A ( x ) is a set expression that does not depend on x . (Contributed by Mario Carneiro, 18-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eusvnfb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eusvnf | ||
| 2 | euex | ||
| 3 | eqvisset | ||
| 4 | 3 | sps | |
| 5 | 4 | exlimiv | |
| 6 | 2 5 | syl | |
| 7 | 1 6 | jca | |
| 8 | isset | ||
| 9 | nfcvd | ||
| 10 | id | ||
| 11 | 9 10 | nfeqd | |
| 12 | 11 | nf5rd | |
| 13 | 12 | eximdv | |
| 14 | 8 13 | biimtrid | |
| 15 | 14 | imp | |
| 16 | eusv1 | ||
| 17 | 15 16 | sylibr | |
| 18 | 7 17 | impbii |