This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Even if x is free in A , it is effectively bound when A ( x ) is single-valued. (Contributed by NM, 14-Oct-2010) (Revised by Mario Carneiro, 14-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eusvnf | |- ( E! y A. x y = A -> F/_ x A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex | |- ( E! y A. x y = A -> E. y A. x y = A ) |
|
| 2 | nfcv | |- F/_ x z |
|
| 3 | nfcsb1v | |- F/_ x [_ z / x ]_ A |
|
| 4 | 3 | nfeq2 | |- F/ x y = [_ z / x ]_ A |
| 5 | csbeq1a | |- ( x = z -> A = [_ z / x ]_ A ) |
|
| 6 | 5 | eqeq2d | |- ( x = z -> ( y = A <-> y = [_ z / x ]_ A ) ) |
| 7 | 2 4 6 | spcgf | |- ( z e. _V -> ( A. x y = A -> y = [_ z / x ]_ A ) ) |
| 8 | 7 | elv | |- ( A. x y = A -> y = [_ z / x ]_ A ) |
| 9 | nfcv | |- F/_ x w |
|
| 10 | nfcsb1v | |- F/_ x [_ w / x ]_ A |
|
| 11 | 10 | nfeq2 | |- F/ x y = [_ w / x ]_ A |
| 12 | csbeq1a | |- ( x = w -> A = [_ w / x ]_ A ) |
|
| 13 | 12 | eqeq2d | |- ( x = w -> ( y = A <-> y = [_ w / x ]_ A ) ) |
| 14 | 9 11 13 | spcgf | |- ( w e. _V -> ( A. x y = A -> y = [_ w / x ]_ A ) ) |
| 15 | 14 | elv | |- ( A. x y = A -> y = [_ w / x ]_ A ) |
| 16 | 8 15 | eqtr3d | |- ( A. x y = A -> [_ z / x ]_ A = [_ w / x ]_ A ) |
| 17 | 16 | alrimivv | |- ( A. x y = A -> A. z A. w [_ z / x ]_ A = [_ w / x ]_ A ) |
| 18 | sbnfc2 | |- ( F/_ x A <-> A. z A. w [_ z / x ]_ A = [_ w / x ]_ A ) |
|
| 19 | 17 18 | sylibr | |- ( A. x y = A -> F/_ x A ) |
| 20 | 19 | exlimiv | |- ( E. y A. x y = A -> F/_ x A ) |
| 21 | 1 20 | syl | |- ( E! y A. x y = A -> F/_ x A ) |