This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by NM, 14-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eusv1 | |- ( E! y A. x y = A <-> E. y A. x y = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp | |- ( A. x y = A -> y = A ) |
|
| 2 | sp | |- ( A. x z = A -> z = A ) |
|
| 3 | eqtr3 | |- ( ( y = A /\ z = A ) -> y = z ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A. x y = A /\ A. x z = A ) -> y = z ) |
| 5 | 4 | gen2 | |- A. y A. z ( ( A. x y = A /\ A. x z = A ) -> y = z ) |
| 6 | eqeq1 | |- ( y = z -> ( y = A <-> z = A ) ) |
|
| 7 | 6 | albidv | |- ( y = z -> ( A. x y = A <-> A. x z = A ) ) |
| 8 | 7 | eu4 | |- ( E! y A. x y = A <-> ( E. y A. x y = A /\ A. y A. z ( ( A. x y = A /\ A. x z = A ) -> y = z ) ) ) |
| 9 | 5 8 | mpbiran2 | |- ( E! y A. x y = A <-> E. y A. x y = A ) |