This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there exists a unique endofunctor (a functor from a category to itself) for a non-empty category, then the category is terminal. This partially explains why two categories are sufficient in termc2 . (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | euendfunc.f | |- ( ph -> E! f f e. ( C Func C ) ) |
|
| euendfunc.b | |- B = ( Base ` C ) |
||
| euendfunc.0 | |- ( ph -> B =/= (/) ) |
||
| Assertion | euendfunc | |- ( ph -> C e. TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euendfunc.f | |- ( ph -> E! f f e. ( C Func C ) ) |
|
| 2 | euendfunc.b | |- B = ( Base ` C ) |
|
| 3 | euendfunc.0 | |- ( ph -> B =/= (/) ) |
|
| 4 | n0 | |- ( B =/= (/) <-> E. x x e. B ) |
|
| 5 | 3 4 | sylib | |- ( ph -> E. x x e. B ) |
| 6 | eqid | |- ( idFunc ` C ) = ( idFunc ` C ) |
|
| 7 | eqid | |- ( C DiagFunc C ) = ( C DiagFunc C ) |
|
| 8 | 1 | adantr | |- ( ( ph /\ x e. B ) -> E! f f e. ( C Func C ) ) |
| 9 | euex | |- ( E! f f e. ( C Func C ) -> E. f f e. ( C Func C ) ) |
|
| 10 | 8 9 | syl | |- ( ( ph /\ x e. B ) -> E. f f e. ( C Func C ) ) |
| 11 | funcrcl | |- ( f e. ( C Func C ) -> ( C e. Cat /\ C e. Cat ) ) |
|
| 12 | 11 | simpld | |- ( f e. ( C Func C ) -> C e. Cat ) |
| 13 | 12 | exlimiv | |- ( E. f f e. ( C Func C ) -> C e. Cat ) |
| 14 | 10 13 | syl | |- ( ( ph /\ x e. B ) -> C e. Cat ) |
| 15 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) |
|
| 16 | eqid | |- ( ( 1st ` ( C DiagFunc C ) ) ` x ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) |
|
| 17 | 6 | idfucl | |- ( C e. Cat -> ( idFunc ` C ) e. ( C Func C ) ) |
| 18 | 14 17 | syl | |- ( ( ph /\ x e. B ) -> ( idFunc ` C ) e. ( C Func C ) ) |
| 19 | 7 14 14 2 15 16 | diag1cl | |- ( ( ph /\ x e. B ) -> ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) |
| 20 | eumo | |- ( E! f f e. ( C Func C ) -> E* f f e. ( C Func C ) ) |
|
| 21 | 8 20 | syl | |- ( ( ph /\ x e. B ) -> E* f f e. ( C Func C ) ) |
| 22 | eleq1w | |- ( f = g -> ( f e. ( C Func C ) <-> g e. ( C Func C ) ) ) |
|
| 23 | 22 | mo4 | |- ( E* f f e. ( C Func C ) <-> A. f A. g ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) -> f = g ) ) |
| 24 | 21 23 | sylib | |- ( ( ph /\ x e. B ) -> A. f A. g ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) -> f = g ) ) |
| 25 | fvex | |- ( idFunc ` C ) e. _V |
|
| 26 | fvex | |- ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. _V |
|
| 27 | simpl | |- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> f = ( idFunc ` C ) ) |
|
| 28 | 27 | eleq1d | |- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> ( f e. ( C Func C ) <-> ( idFunc ` C ) e. ( C Func C ) ) ) |
| 29 | simpr | |- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) |
|
| 30 | 29 | eleq1d | |- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> ( g e. ( C Func C ) <-> ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) ) |
| 31 | 28 30 | anbi12d | |- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) <-> ( ( idFunc ` C ) e. ( C Func C ) /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) ) ) |
| 32 | eqeq12 | |- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> ( f = g <-> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) ) |
|
| 33 | 31 32 | imbi12d | |- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> ( ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) -> f = g ) <-> ( ( ( idFunc ` C ) e. ( C Func C ) /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) -> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) ) ) |
| 34 | 33 | spc2gv | |- ( ( ( idFunc ` C ) e. _V /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. _V ) -> ( A. f A. g ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) -> f = g ) -> ( ( ( idFunc ` C ) e. ( C Func C ) /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) -> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) ) ) |
| 35 | 25 26 34 | mp2an | |- ( A. f A. g ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) -> f = g ) -> ( ( ( idFunc ` C ) e. ( C Func C ) /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) -> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) ) |
| 36 | 24 35 | syl | |- ( ( ph /\ x e. B ) -> ( ( ( idFunc ` C ) e. ( C Func C ) /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) -> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) ) |
| 37 | 18 19 36 | mp2and | |- ( ( ph /\ x e. B ) -> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) |
| 38 | 6 7 14 2 15 16 37 | idfudiag1 | |- ( ( ph /\ x e. B ) -> C e. TermCat ) |
| 39 | 5 38 | exlimddv | |- ( ph -> C e. TermCat ) |