This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvtp1g | |- ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp | |- { <. A , D >. , <. B , E >. , <. C , F >. } = ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) |
|
| 2 | 1 | fveq1i | |- ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) |
| 3 | necom | |- ( A =/= C <-> C =/= A ) |
|
| 4 | fvunsn | |- ( C =/= A -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) |
|
| 5 | 3 4 | sylbi | |- ( A =/= C -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) |
| 6 | 5 | ad2antll | |- ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) |
| 7 | fvpr1g | |- ( ( A e. V /\ D e. W /\ A =/= B ) -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) |
|
| 8 | 7 | 3expa | |- ( ( ( A e. V /\ D e. W ) /\ A =/= B ) -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) |
| 9 | 8 | adantrr | |- ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) |
| 10 | 6 9 | eqtrd | |- ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = D ) |
| 11 | 2 10 | eqtrid | |- ( ( ( A e. V /\ D e. W ) /\ ( A =/= B /\ A =/= C ) ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = D ) |