This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functionalized Hom-set operation equals the Hom-set operation in the category of extensible structures (in a universe). (Contributed by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrchomfn.c | |- C = ( ExtStrCat ` U ) |
|
| estrchomfn.u | |- ( ph -> U e. V ) |
||
| estrchomfn.h | |- H = ( Hom ` C ) |
||
| Assertion | estrchomfeqhom | |- ( ph -> ( Homf ` C ) = H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrchomfn.c | |- C = ( ExtStrCat ` U ) |
|
| 2 | estrchomfn.u | |- ( ph -> U e. V ) |
|
| 3 | estrchomfn.h | |- H = ( Hom ` C ) |
|
| 4 | 1 2 3 | estrchomfn | |- ( ph -> H Fn ( U X. U ) ) |
| 5 | 1 2 | estrcbas | |- ( ph -> U = ( Base ` C ) ) |
| 6 | 5 | eqcomd | |- ( ph -> ( Base ` C ) = U ) |
| 7 | 6 | sqxpeqd | |- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = ( U X. U ) ) |
| 8 | 7 | fneq2d | |- ( ph -> ( H Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> H Fn ( U X. U ) ) ) |
| 9 | 4 8 | mpbird | |- ( ph -> H Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 10 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 11 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 12 | 10 11 3 | fnhomeqhomf | |- ( H Fn ( ( Base ` C ) X. ( Base ` C ) ) -> ( Homf ` C ) = H ) |
| 13 | 9 12 | syl | |- ( ph -> ( Homf ` C ) = H ) |