This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functionalized Hom-set operation equals the Hom-set operation in the category of extensible structures (in a universe). (Contributed by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrchomfn.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| estrchomfn.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| estrchomfn.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | estrchomfeqhom | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrchomfn.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | estrchomfn.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | estrchomfn.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | 1 2 3 | estrchomfn | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑈 × 𝑈 ) ) |
| 5 | 1 2 | estrcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 6 | 5 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = 𝑈 ) |
| 7 | 6 | sqxpeqd | ⊢ ( 𝜑 → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) = ( 𝑈 × 𝑈 ) ) |
| 8 | 7 | fneq2d | ⊢ ( 𝜑 → ( 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ 𝐻 Fn ( 𝑈 × 𝑈 ) ) ) |
| 9 | 4 8 | mpbird | ⊢ ( 𝜑 → 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 10 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 12 | 10 11 3 | fnhomeqhomf | ⊢ ( 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = 𝐻 ) |
| 13 | 9 12 | syl | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = 𝐻 ) |