This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hom-set operation in the category of extensible structures (in a universe) is a function. (Contributed by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrchomfn.c | |- C = ( ExtStrCat ` U ) |
|
| estrchomfn.u | |- ( ph -> U e. V ) |
||
| estrchomfn.h | |- H = ( Hom ` C ) |
||
| Assertion | estrchomfn | |- ( ph -> H Fn ( U X. U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrchomfn.c | |- C = ( ExtStrCat ` U ) |
|
| 2 | estrchomfn.u | |- ( ph -> U e. V ) |
|
| 3 | estrchomfn.h | |- H = ( Hom ` C ) |
|
| 4 | eqid | |- ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) |
|
| 5 | ovex | |- ( ( Base ` y ) ^m ( Base ` x ) ) e. _V |
|
| 6 | 4 5 | fnmpoi | |- ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( U X. U ) |
| 7 | 1 2 3 | estrchomfval | |- ( ph -> H = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 8 | 7 | fneq1d | |- ( ph -> ( H Fn ( U X. U ) <-> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( U X. U ) ) ) |
| 9 | 6 8 | mpbiri | |- ( ph -> H Fn ( U X. U ) ) |