This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | erinxp.r | |- ( ph -> R Er A ) |
|
| erinxp.a | |- ( ph -> B C_ A ) |
||
| Assertion | erinxp | |- ( ph -> ( R i^i ( B X. B ) ) Er B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erinxp.r | |- ( ph -> R Er A ) |
|
| 2 | erinxp.a | |- ( ph -> B C_ A ) |
|
| 3 | relinxp | |- Rel ( R i^i ( B X. B ) ) |
|
| 4 | 3 | a1i | |- ( ph -> Rel ( R i^i ( B X. B ) ) ) |
| 5 | simpr | |- ( ( ph /\ x ( R i^i ( B X. B ) ) y ) -> x ( R i^i ( B X. B ) ) y ) |
|
| 6 | brinxp2 | |- ( x ( R i^i ( B X. B ) ) y <-> ( ( x e. B /\ y e. B ) /\ x R y ) ) |
|
| 7 | 5 6 | sylib | |- ( ( ph /\ x ( R i^i ( B X. B ) ) y ) -> ( ( x e. B /\ y e. B ) /\ x R y ) ) |
| 8 | 7 | simplrd | |- ( ( ph /\ x ( R i^i ( B X. B ) ) y ) -> y e. B ) |
| 9 | 7 | simplld | |- ( ( ph /\ x ( R i^i ( B X. B ) ) y ) -> x e. B ) |
| 10 | 1 | adantr | |- ( ( ph /\ x ( R i^i ( B X. B ) ) y ) -> R Er A ) |
| 11 | 7 | simprd | |- ( ( ph /\ x ( R i^i ( B X. B ) ) y ) -> x R y ) |
| 12 | 10 11 | ersym | |- ( ( ph /\ x ( R i^i ( B X. B ) ) y ) -> y R x ) |
| 13 | brinxp2 | |- ( y ( R i^i ( B X. B ) ) x <-> ( ( y e. B /\ x e. B ) /\ y R x ) ) |
|
| 14 | 8 9 12 13 | syl21anbrc | |- ( ( ph /\ x ( R i^i ( B X. B ) ) y ) -> y ( R i^i ( B X. B ) ) x ) |
| 15 | 9 | adantrr | |- ( ( ph /\ ( x ( R i^i ( B X. B ) ) y /\ y ( R i^i ( B X. B ) ) z ) ) -> x e. B ) |
| 16 | simprr | |- ( ( ph /\ ( x ( R i^i ( B X. B ) ) y /\ y ( R i^i ( B X. B ) ) z ) ) -> y ( R i^i ( B X. B ) ) z ) |
|
| 17 | brinxp2 | |- ( y ( R i^i ( B X. B ) ) z <-> ( ( y e. B /\ z e. B ) /\ y R z ) ) |
|
| 18 | 16 17 | sylib | |- ( ( ph /\ ( x ( R i^i ( B X. B ) ) y /\ y ( R i^i ( B X. B ) ) z ) ) -> ( ( y e. B /\ z e. B ) /\ y R z ) ) |
| 19 | 18 | simplrd | |- ( ( ph /\ ( x ( R i^i ( B X. B ) ) y /\ y ( R i^i ( B X. B ) ) z ) ) -> z e. B ) |
| 20 | 1 | adantr | |- ( ( ph /\ ( x ( R i^i ( B X. B ) ) y /\ y ( R i^i ( B X. B ) ) z ) ) -> R Er A ) |
| 21 | 11 | adantrr | |- ( ( ph /\ ( x ( R i^i ( B X. B ) ) y /\ y ( R i^i ( B X. B ) ) z ) ) -> x R y ) |
| 22 | 18 | simprd | |- ( ( ph /\ ( x ( R i^i ( B X. B ) ) y /\ y ( R i^i ( B X. B ) ) z ) ) -> y R z ) |
| 23 | 20 21 22 | ertrd | |- ( ( ph /\ ( x ( R i^i ( B X. B ) ) y /\ y ( R i^i ( B X. B ) ) z ) ) -> x R z ) |
| 24 | brinxp2 | |- ( x ( R i^i ( B X. B ) ) z <-> ( ( x e. B /\ z e. B ) /\ x R z ) ) |
|
| 25 | 15 19 23 24 | syl21anbrc | |- ( ( ph /\ ( x ( R i^i ( B X. B ) ) y /\ y ( R i^i ( B X. B ) ) z ) ) -> x ( R i^i ( B X. B ) ) z ) |
| 26 | 1 | adantr | |- ( ( ph /\ x e. B ) -> R Er A ) |
| 27 | 2 | sselda | |- ( ( ph /\ x e. B ) -> x e. A ) |
| 28 | 26 27 | erref | |- ( ( ph /\ x e. B ) -> x R x ) |
| 29 | 28 | ex | |- ( ph -> ( x e. B -> x R x ) ) |
| 30 | 29 | pm4.71rd | |- ( ph -> ( x e. B <-> ( x R x /\ x e. B ) ) ) |
| 31 | brin | |- ( x ( R i^i ( B X. B ) ) x <-> ( x R x /\ x ( B X. B ) x ) ) |
|
| 32 | brxp | |- ( x ( B X. B ) x <-> ( x e. B /\ x e. B ) ) |
|
| 33 | anidm | |- ( ( x e. B /\ x e. B ) <-> x e. B ) |
|
| 34 | 32 33 | bitri | |- ( x ( B X. B ) x <-> x e. B ) |
| 35 | 34 | anbi2i | |- ( ( x R x /\ x ( B X. B ) x ) <-> ( x R x /\ x e. B ) ) |
| 36 | 31 35 | bitri | |- ( x ( R i^i ( B X. B ) ) x <-> ( x R x /\ x e. B ) ) |
| 37 | 30 36 | bitr4di | |- ( ph -> ( x e. B <-> x ( R i^i ( B X. B ) ) x ) ) |
| 38 | 4 14 25 37 | iserd | |- ( ph -> ( R i^i ( B X. B ) ) Er B ) |