This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation and the identity relation are disjoint. Variable-free version of nelaneq . (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epinid0 | |- ( _E i^i _I ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eprel | |- _E = { <. x , y >. | x e. y } |
|
| 2 | df-id | |- _I = { <. x , y >. | x = y } |
|
| 3 | 1 2 | ineq12i | |- ( _E i^i _I ) = ( { <. x , y >. | x e. y } i^i { <. x , y >. | x = y } ) |
| 4 | inopab | |- ( { <. x , y >. | x e. y } i^i { <. x , y >. | x = y } ) = { <. x , y >. | ( x e. y /\ x = y ) } |
|
| 5 | nelaneq | |- -. ( x e. y /\ x = y ) |
|
| 6 | 5 | gen2 | |- A. x A. y -. ( x e. y /\ x = y ) |
| 7 | opab0 | |- ( { <. x , y >. | ( x e. y /\ x = y ) } = (/) <-> A. x A. y -. ( x e. y /\ x = y ) ) |
|
| 8 | 6 7 | mpbir | |- { <. x , y >. | ( x e. y /\ x = y ) } = (/) |
| 9 | 3 4 8 | 3eqtri | |- ( _E i^i _I ) = (/) |