This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004) (Proof shortened by BJ, 16-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucprcreg | |- ( -. A e. _V <-> suc A = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucprc | |- ( -. A e. _V -> suc A = A ) |
|
| 2 | elirr | |- -. A e. A |
|
| 3 | df-suc | |- suc A = ( A u. { A } ) |
|
| 4 | 3 | eqeq1i | |- ( suc A = A <-> ( A u. { A } ) = A ) |
| 5 | ssequn2 | |- ( { A } C_ A <-> ( A u. { A } ) = A ) |
|
| 6 | 4 5 | sylbb2 | |- ( suc A = A -> { A } C_ A ) |
| 7 | snidg | |- ( A e. _V -> A e. { A } ) |
|
| 8 | ssel2 | |- ( ( { A } C_ A /\ A e. { A } ) -> A e. A ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( suc A = A /\ A e. _V ) -> A e. A ) |
| 10 | 2 9 | mto | |- -. ( suc A = A /\ A e. _V ) |
| 11 | 10 | imnani | |- ( suc A = A -> -. A e. _V ) |
| 12 | 1 11 | impbii | |- ( -. A e. _V <-> suc A = A ) |