This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Regularity
Introduce the Axiom of Regularity
epinid0
Metamath Proof Explorer
Description: The membership relation and the identity relation are disjoint.
Variable-free version of nelaneq . (Proposed by BJ, 18-Jun-2022.)
(Contributed by AV , 18-Jun-2022)
Ref
Expression
Assertion
epinid0
⊢ E ∩ I = ∅
Proof
Step
Hyp
Ref
Expression
1
df-eprel
⊢ E = x y | x ∈ y
2
df-id
⊢ I = x y | x = y
3
1 2
ineq12i
⊢ E ∩ I = x y | x ∈ y ∩ x y | x = y
4
inopab
⊢ x y | x ∈ y ∩ x y | x = y = x y | x ∈ y ∧ x = y
5
nelaneq
⊢ ¬ x ∈ y ∧ x = y
6
5
gen2
⊢ ∀ x ∀ y ¬ x ∈ y ∧ x = y
7
opab0
⊢ x y | x ∈ y ∧ x = y = ∅ ↔ ∀ x ∀ y ¬ x ∈ y ∧ x = y
8
6 7
mpbir
⊢ x y | x ∈ y ∧ x = y = ∅
9
3 4 8
3eqtri
⊢ E ∩ I = ∅