This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation and the identity relation are disjoint. Variable-free version of nelaneq . (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epinid0 | ⊢ ( E ∩ I ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eprel | ⊢ E = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ 𝑦 } | |
| 2 | df-id | ⊢ I = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } | |
| 3 | 1 2 | ineq12i | ⊢ ( E ∩ I ) = ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ 𝑦 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } ) |
| 4 | inopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ 𝑦 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 = 𝑦 } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦 ) } | |
| 5 | nelaneq | ⊢ ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦 ) | |
| 6 | 5 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦 ) |
| 7 | opab0 | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦 ) } = ∅ ↔ ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦 ) ) | |
| 8 | 6 7 | mpbir | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑦 ∧ 𝑥 = 𝑦 ) } = ∅ |
| 9 | 3 4 8 | 3eqtri | ⊢ ( E ∩ I ) = ∅ |