This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr ). (Contributed by BTernaryTau, 10-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | entrfil | |- ( ( A e. Fin /\ A ~~ B /\ B ~~ C ) -> A ~~ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | |- ( B ~~ C <-> E. f f : B -1-1-onto-> C ) |
|
| 2 | bren | |- ( A ~~ B <-> E. g g : A -1-1-onto-> B ) |
|
| 3 | exdistrv | |- ( E. g E. f ( g : A -1-1-onto-> B /\ f : B -1-1-onto-> C ) <-> ( E. g g : A -1-1-onto-> B /\ E. f f : B -1-1-onto-> C ) ) |
|
| 4 | 19.42vv | |- ( E. g E. f ( A e. Fin /\ ( g : A -1-1-onto-> B /\ f : B -1-1-onto-> C ) ) <-> ( A e. Fin /\ E. g E. f ( g : A -1-1-onto-> B /\ f : B -1-1-onto-> C ) ) ) |
|
| 5 | f1oco | |- ( ( f : B -1-1-onto-> C /\ g : A -1-1-onto-> B ) -> ( f o. g ) : A -1-1-onto-> C ) |
|
| 6 | 5 | ancoms | |- ( ( g : A -1-1-onto-> B /\ f : B -1-1-onto-> C ) -> ( f o. g ) : A -1-1-onto-> C ) |
| 7 | f1oenfi | |- ( ( A e. Fin /\ ( f o. g ) : A -1-1-onto-> C ) -> A ~~ C ) |
|
| 8 | 6 7 | sylan2 | |- ( ( A e. Fin /\ ( g : A -1-1-onto-> B /\ f : B -1-1-onto-> C ) ) -> A ~~ C ) |
| 9 | 8 | exlimivv | |- ( E. g E. f ( A e. Fin /\ ( g : A -1-1-onto-> B /\ f : B -1-1-onto-> C ) ) -> A ~~ C ) |
| 10 | 4 9 | sylbir | |- ( ( A e. Fin /\ E. g E. f ( g : A -1-1-onto-> B /\ f : B -1-1-onto-> C ) ) -> A ~~ C ) |
| 11 | 3 10 | sylan2br | |- ( ( A e. Fin /\ ( E. g g : A -1-1-onto-> B /\ E. f f : B -1-1-onto-> C ) ) -> A ~~ C ) |
| 12 | 11 | 3impb | |- ( ( A e. Fin /\ E. g g : A -1-1-onto-> B /\ E. f f : B -1-1-onto-> C ) -> A ~~ C ) |
| 13 | 2 12 | syl3an2b | |- ( ( A e. Fin /\ A ~~ B /\ E. f f : B -1-1-onto-> C ) -> A ~~ C ) |
| 14 | 1 13 | syl3an3b | |- ( ( A e. Fin /\ A ~~ B /\ B ~~ C ) -> A ~~ C ) |