This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proof induction for en2 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016) Generalize to all ordinals and avoid ax-pow , ax-un . (Revised by BTernaryTau, 6-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | enp1i.1 | |- Ord M |
|
| enp1i.2 | |- N = suc M |
||
| enp1i.3 | |- ( ( A \ { x } ) ~~ M -> ph ) |
||
| enp1i.4 | |- ( x e. A -> ( ph -> ps ) ) |
||
| Assertion | enp1i | |- ( A ~~ N -> E. x ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enp1i.1 | |- Ord M |
|
| 2 | enp1i.2 | |- N = suc M |
|
| 3 | enp1i.3 | |- ( ( A \ { x } ) ~~ M -> ph ) |
|
| 4 | enp1i.4 | |- ( x e. A -> ( ph -> ps ) ) |
|
| 5 | 2 | breq2i | |- ( A ~~ N <-> A ~~ suc M ) |
| 6 | encv | |- ( A ~~ suc M -> ( A e. _V /\ suc M e. _V ) ) |
|
| 7 | 6 | simprd | |- ( A ~~ suc M -> suc M e. _V ) |
| 8 | sssucid | |- M C_ suc M |
|
| 9 | ssexg | |- ( ( M C_ suc M /\ suc M e. _V ) -> M e. _V ) |
|
| 10 | 8 9 | mpan | |- ( suc M e. _V -> M e. _V ) |
| 11 | elong | |- ( M e. _V -> ( M e. On <-> Ord M ) ) |
|
| 12 | 7 10 11 | 3syl | |- ( A ~~ suc M -> ( M e. On <-> Ord M ) ) |
| 13 | 1 12 | mpbiri | |- ( A ~~ suc M -> M e. On ) |
| 14 | rexdif1en | |- ( ( M e. On /\ A ~~ suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) |
|
| 15 | 13 14 | mpancom | |- ( A ~~ suc M -> E. x e. A ( A \ { x } ) ~~ M ) |
| 16 | 3 | reximi | |- ( E. x e. A ( A \ { x } ) ~~ M -> E. x e. A ph ) |
| 17 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
| 18 | 4 | imp | |- ( ( x e. A /\ ph ) -> ps ) |
| 19 | 18 | eximi | |- ( E. x ( x e. A /\ ph ) -> E. x ps ) |
| 20 | 17 19 | sylbi | |- ( E. x e. A ph -> E. x ps ) |
| 21 | 15 16 20 | 3syl | |- ( A ~~ suc M -> E. x ps ) |
| 22 | 5 21 | sylbi | |- ( A ~~ N -> E. x ps ) |