This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| funcsetcestrc.c | |- C = ( Base ` S ) |
||
| funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
||
| funcsetcestrc.u | |- ( ph -> U e. WUni ) |
||
| funcsetcestrc.o | |- ( ph -> _om e. U ) |
||
| funcsetcestrc.g | |- ( ph -> G = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) ) |
||
| Assertion | funcsetcestrclem4 | |- ( ph -> G Fn ( C X. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| 2 | funcsetcestrc.c | |- C = ( Base ` S ) |
|
| 3 | funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
|
| 4 | funcsetcestrc.u | |- ( ph -> U e. WUni ) |
|
| 5 | funcsetcestrc.o | |- ( ph -> _om e. U ) |
|
| 6 | funcsetcestrc.g | |- ( ph -> G = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) ) |
|
| 7 | eqid | |- ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) |
|
| 8 | ovex | |- ( y ^m x ) e. _V |
|
| 9 | resiexg | |- ( ( y ^m x ) e. _V -> ( _I |` ( y ^m x ) ) e. _V ) |
|
| 10 | 8 9 | ax-mp | |- ( _I |` ( y ^m x ) ) e. _V |
| 11 | 7 10 | fnmpoi | |- ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) Fn ( C X. C ) |
| 12 | 6 | fneq1d | |- ( ph -> ( G Fn ( C X. C ) <-> ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) Fn ( C X. C ) ) ) |
| 13 | 11 12 | mpbiri | |- ( ph -> G Fn ( C X. C ) ) |