This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrn3 | |- ( A e. ran B <-> ( B i^i ( _V X. { A } ) ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn | |- ran B = dom `' B |
|
| 2 | 1 | eleq2i | |- ( A e. ran B <-> A e. dom `' B ) |
| 3 | eldm3 | |- ( A e. dom `' B <-> ( `' B |` { A } ) =/= (/) ) |
|
| 4 | cnvxp | |- `' ( _V X. { A } ) = ( { A } X. _V ) |
|
| 5 | 4 | ineq2i | |- ( `' B i^i `' ( _V X. { A } ) ) = ( `' B i^i ( { A } X. _V ) ) |
| 6 | cnvin | |- `' ( B i^i ( _V X. { A } ) ) = ( `' B i^i `' ( _V X. { A } ) ) |
|
| 7 | df-res | |- ( `' B |` { A } ) = ( `' B i^i ( { A } X. _V ) ) |
|
| 8 | 5 6 7 | 3eqtr4ri | |- ( `' B |` { A } ) = `' ( B i^i ( _V X. { A } ) ) |
| 9 | 8 | eqeq1i | |- ( ( `' B |` { A } ) = (/) <-> `' ( B i^i ( _V X. { A } ) ) = (/) ) |
| 10 | relinxp | |- Rel ( B i^i ( _V X. { A } ) ) |
|
| 11 | cnveq0 | |- ( Rel ( B i^i ( _V X. { A } ) ) -> ( ( B i^i ( _V X. { A } ) ) = (/) <-> `' ( B i^i ( _V X. { A } ) ) = (/) ) ) |
|
| 12 | 10 11 | ax-mp | |- ( ( B i^i ( _V X. { A } ) ) = (/) <-> `' ( B i^i ( _V X. { A } ) ) = (/) ) |
| 13 | 9 12 | bitr4i | |- ( ( `' B |` { A } ) = (/) <-> ( B i^i ( _V X. { A } ) ) = (/) ) |
| 14 | 13 | necon3bii | |- ( ( `' B |` { A } ) =/= (/) <-> ( B i^i ( _V X. { A } ) ) =/= (/) ) |
| 15 | 2 3 14 | 3bitri | |- ( A e. ran B <-> ( B i^i ( _V X. { A } ) ) =/= (/) ) |