This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrn3 | ⊢ ( 𝐴 ∈ ran 𝐵 ↔ ( 𝐵 ∩ ( V × { 𝐴 } ) ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn | ⊢ ran 𝐵 = dom ◡ 𝐵 | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ ran 𝐵 ↔ 𝐴 ∈ dom ◡ 𝐵 ) |
| 3 | eldm3 | ⊢ ( 𝐴 ∈ dom ◡ 𝐵 ↔ ( ◡ 𝐵 ↾ { 𝐴 } ) ≠ ∅ ) | |
| 4 | cnvxp | ⊢ ◡ ( V × { 𝐴 } ) = ( { 𝐴 } × V ) | |
| 5 | 4 | ineq2i | ⊢ ( ◡ 𝐵 ∩ ◡ ( V × { 𝐴 } ) ) = ( ◡ 𝐵 ∩ ( { 𝐴 } × V ) ) |
| 6 | cnvin | ⊢ ◡ ( 𝐵 ∩ ( V × { 𝐴 } ) ) = ( ◡ 𝐵 ∩ ◡ ( V × { 𝐴 } ) ) | |
| 7 | df-res | ⊢ ( ◡ 𝐵 ↾ { 𝐴 } ) = ( ◡ 𝐵 ∩ ( { 𝐴 } × V ) ) | |
| 8 | 5 6 7 | 3eqtr4ri | ⊢ ( ◡ 𝐵 ↾ { 𝐴 } ) = ◡ ( 𝐵 ∩ ( V × { 𝐴 } ) ) |
| 9 | 8 | eqeq1i | ⊢ ( ( ◡ 𝐵 ↾ { 𝐴 } ) = ∅ ↔ ◡ ( 𝐵 ∩ ( V × { 𝐴 } ) ) = ∅ ) |
| 10 | relinxp | ⊢ Rel ( 𝐵 ∩ ( V × { 𝐴 } ) ) | |
| 11 | cnveq0 | ⊢ ( Rel ( 𝐵 ∩ ( V × { 𝐴 } ) ) → ( ( 𝐵 ∩ ( V × { 𝐴 } ) ) = ∅ ↔ ◡ ( 𝐵 ∩ ( V × { 𝐴 } ) ) = ∅ ) ) | |
| 12 | 10 11 | ax-mp | ⊢ ( ( 𝐵 ∩ ( V × { 𝐴 } ) ) = ∅ ↔ ◡ ( 𝐵 ∩ ( V × { 𝐴 } ) ) = ∅ ) |
| 13 | 9 12 | bitr4i | ⊢ ( ( ◡ 𝐵 ↾ { 𝐴 } ) = ∅ ↔ ( 𝐵 ∩ ( V × { 𝐴 } ) ) = ∅ ) |
| 14 | 13 | necon3bii | ⊢ ( ( ◡ 𝐵 ↾ { 𝐴 } ) ≠ ∅ ↔ ( 𝐵 ∩ ( V × { 𝐴 } ) ) ≠ ∅ ) |
| 15 | 2 3 14 | 3bitri | ⊢ ( 𝐴 ∈ ran 𝐵 ↔ ( 𝐵 ∩ ( V × { 𝐴 } ) ) ≠ ∅ ) |