This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldm3 | |- ( A e. dom B <-> ( B |` { A } ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. dom B -> A e. _V ) |
|
| 2 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 3 | reseq2 | |- ( { A } = (/) -> ( B |` { A } ) = ( B |` (/) ) ) |
|
| 4 | res0 | |- ( B |` (/) ) = (/) |
|
| 5 | 3 4 | eqtrdi | |- ( { A } = (/) -> ( B |` { A } ) = (/) ) |
| 6 | 2 5 | sylbi | |- ( -. A e. _V -> ( B |` { A } ) = (/) ) |
| 7 | 6 | necon1ai | |- ( ( B |` { A } ) =/= (/) -> A e. _V ) |
| 8 | eleq1 | |- ( x = A -> ( x e. dom B <-> A e. dom B ) ) |
|
| 9 | sneq | |- ( x = A -> { x } = { A } ) |
|
| 10 | 9 | reseq2d | |- ( x = A -> ( B |` { x } ) = ( B |` { A } ) ) |
| 11 | 10 | neeq1d | |- ( x = A -> ( ( B |` { x } ) =/= (/) <-> ( B |` { A } ) =/= (/) ) ) |
| 12 | dfclel | |- ( <. x , y >. e. B <-> E. p ( p = <. x , y >. /\ p e. B ) ) |
|
| 13 | 12 | exbii | |- ( E. y <. x , y >. e. B <-> E. y E. p ( p = <. x , y >. /\ p e. B ) ) |
| 14 | vex | |- x e. _V |
|
| 15 | 14 | eldm2 | |- ( x e. dom B <-> E. y <. x , y >. e. B ) |
| 16 | n0 | |- ( ( B |` { x } ) =/= (/) <-> E. p p e. ( B |` { x } ) ) |
|
| 17 | elres | |- ( p e. ( B |` { x } ) <-> E. z e. { x } E. y ( p = <. z , y >. /\ <. z , y >. e. B ) ) |
|
| 18 | eleq1 | |- ( p = <. z , y >. -> ( p e. B <-> <. z , y >. e. B ) ) |
|
| 19 | 18 | pm5.32i | |- ( ( p = <. z , y >. /\ p e. B ) <-> ( p = <. z , y >. /\ <. z , y >. e. B ) ) |
| 20 | opeq1 | |- ( z = x -> <. z , y >. = <. x , y >. ) |
|
| 21 | 20 | eqeq2d | |- ( z = x -> ( p = <. z , y >. <-> p = <. x , y >. ) ) |
| 22 | 21 | anbi1d | |- ( z = x -> ( ( p = <. z , y >. /\ p e. B ) <-> ( p = <. x , y >. /\ p e. B ) ) ) |
| 23 | 19 22 | bitr3id | |- ( z = x -> ( ( p = <. z , y >. /\ <. z , y >. e. B ) <-> ( p = <. x , y >. /\ p e. B ) ) ) |
| 24 | 23 | exbidv | |- ( z = x -> ( E. y ( p = <. z , y >. /\ <. z , y >. e. B ) <-> E. y ( p = <. x , y >. /\ p e. B ) ) ) |
| 25 | 14 24 | rexsn | |- ( E. z e. { x } E. y ( p = <. z , y >. /\ <. z , y >. e. B ) <-> E. y ( p = <. x , y >. /\ p e. B ) ) |
| 26 | 17 25 | bitri | |- ( p e. ( B |` { x } ) <-> E. y ( p = <. x , y >. /\ p e. B ) ) |
| 27 | 26 | exbii | |- ( E. p p e. ( B |` { x } ) <-> E. p E. y ( p = <. x , y >. /\ p e. B ) ) |
| 28 | excom | |- ( E. p E. y ( p = <. x , y >. /\ p e. B ) <-> E. y E. p ( p = <. x , y >. /\ p e. B ) ) |
|
| 29 | 16 27 28 | 3bitri | |- ( ( B |` { x } ) =/= (/) <-> E. y E. p ( p = <. x , y >. /\ p e. B ) ) |
| 30 | 13 15 29 | 3bitr4i | |- ( x e. dom B <-> ( B |` { x } ) =/= (/) ) |
| 31 | 8 11 30 | vtoclbg | |- ( A e. _V -> ( A e. dom B <-> ( B |` { A } ) =/= (/) ) ) |
| 32 | 1 7 31 | pm5.21nii | |- ( A e. dom B <-> ( B |` { A } ) =/= (/) ) |