This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of an operation defined by the maps-to notation with a function of nonnegative integers into a class abstraction of words as a result having an element. Note that ph may depend on z as well as on v and y and n . (Contributed by AV, 16-Jul-2018) (Revised by AV, 16-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elovmptnn0wrd.o | |- O = ( v e. _V , y e. _V |-> ( n e. NN0 |-> { z e. Word v | ph } ) ) |
|
| Assertion | elovmptnn0wrd | |- ( Z e. ( ( V O Y ) ` N ) -> ( ( V e. _V /\ Y e. _V ) /\ ( N e. NN0 /\ Z e. Word V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmptnn0wrd.o | |- O = ( v e. _V , y e. _V |-> ( n e. NN0 |-> { z e. Word v | ph } ) ) |
|
| 2 | 1 | elovmpt3imp | |- ( Z e. ( ( V O Y ) ` N ) -> ( V e. _V /\ Y e. _V ) ) |
| 3 | wrdexg | |- ( V e. _V -> Word V e. _V ) |
|
| 4 | 3 | adantr | |- ( ( V e. _V /\ Y e. _V ) -> Word V e. _V ) |
| 5 | 2 4 | syl | |- ( Z e. ( ( V O Y ) ` N ) -> Word V e. _V ) |
| 6 | nn0ex | |- NN0 e. _V |
|
| 7 | 5 6 | jctil | |- ( Z e. ( ( V O Y ) ` N ) -> ( NN0 e. _V /\ Word V e. _V ) ) |
| 8 | eqidd | |- ( ( v = V /\ y = Y ) -> NN0 = NN0 ) |
|
| 9 | wrdeq | |- ( v = V -> Word v = Word V ) |
|
| 10 | 9 | adantr | |- ( ( v = V /\ y = Y ) -> Word v = Word V ) |
| 11 | 1 8 10 | elovmpt3rab1 | |- ( ( NN0 e. _V /\ Word V e. _V ) -> ( Z e. ( ( V O Y ) ` N ) -> ( ( V e. _V /\ Y e. _V ) /\ ( N e. NN0 /\ Z e. Word V ) ) ) ) |
| 12 | 7 11 | mpcom | |- ( Z e. ( ( V O Y ) ` N ) -> ( ( V e. _V /\ Y e. _V ) /\ ( N e. NN0 /\ Z e. Word V ) ) ) |