This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion for operation class abstraction. Compare elopab . (Contributed by NM, 14-Sep-1999) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012) (Revised by Mario Carneiro, 19-Dec-2013) Avoid ax-10 , ax-11 . (Revised by Wolf Lammen, 15-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eloprabga.1 | |- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
|
| Assertion | eloprabga | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloprabga.1 | |- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
|
| 2 | elex | |- ( A e. V -> A e. _V ) |
|
| 3 | elex | |- ( B e. W -> B e. _V ) |
|
| 4 | elex | |- ( C e. X -> C e. _V ) |
|
| 5 | opex | |- <. <. A , B >. , C >. e. _V |
|
| 6 | simpr | |- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> w = <. <. A , B >. , C >. ) |
|
| 7 | 6 | eqeq1d | |- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( w = <. <. x , y >. , z >. <-> <. <. A , B >. , C >. = <. <. x , y >. , z >. ) ) |
| 8 | eqcom | |- ( <. <. A , B >. , C >. = <. <. x , y >. , z >. <-> <. <. x , y >. , z >. = <. <. A , B >. , C >. ) |
|
| 9 | vex | |- x e. _V |
|
| 10 | vex | |- y e. _V |
|
| 11 | vex | |- z e. _V |
|
| 12 | 9 10 11 | otth2 | |- ( <. <. x , y >. , z >. = <. <. A , B >. , C >. <-> ( x = A /\ y = B /\ z = C ) ) |
| 13 | 8 12 | bitri | |- ( <. <. A , B >. , C >. = <. <. x , y >. , z >. <-> ( x = A /\ y = B /\ z = C ) ) |
| 14 | 7 13 | bitrdi | |- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( w = <. <. x , y >. , z >. <-> ( x = A /\ y = B /\ z = C ) ) ) |
| 15 | 14 | anbi1d | |- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( ( w = <. <. x , y >. , z >. /\ ph ) <-> ( ( x = A /\ y = B /\ z = C ) /\ ph ) ) ) |
| 16 | 1 | pm5.32i | |- ( ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> ( ( x = A /\ y = B /\ z = C ) /\ ps ) ) |
| 17 | 15 16 | bitrdi | |- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( ( w = <. <. x , y >. , z >. /\ ph ) <-> ( ( x = A /\ y = B /\ z = C ) /\ ps ) ) ) |
| 18 | 17 | 3exbidv | |- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ps ) ) ) |
| 19 | df-oprab | |- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |
|
| 20 | 19 | eleq2i | |- ( w e. { <. <. x , y >. , z >. | ph } <-> w e. { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } ) |
| 21 | abid | |- ( w e. { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) ) |
|
| 22 | 20 21 | bitr2i | |- ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> w e. { <. <. x , y >. , z >. | ph } ) |
| 23 | eleq1 | |- ( w = <. <. A , B >. , C >. -> ( w e. { <. <. x , y >. , z >. | ph } <-> <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } ) ) |
|
| 24 | 22 23 | bitrid | |- ( w = <. <. A , B >. , C >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } ) ) |
| 25 | 24 | adantl | |- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } ) ) |
| 26 | 19.41vvv | |- ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ps ) <-> ( E. x E. y E. z ( x = A /\ y = B /\ z = C ) /\ ps ) ) |
|
| 27 | elisset | |- ( A e. _V -> E. x x = A ) |
|
| 28 | elisset | |- ( B e. _V -> E. y y = B ) |
|
| 29 | elisset | |- ( C e. _V -> E. z z = C ) |
|
| 30 | 27 28 29 | 3anim123i | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( E. x x = A /\ E. y y = B /\ E. z z = C ) ) |
| 31 | 3exdistr | |- ( E. x E. y E. z ( x = A /\ y = B /\ z = C ) <-> E. x ( x = A /\ E. y ( y = B /\ E. z z = C ) ) ) |
|
| 32 | 19.41v | |- ( E. x ( x = A /\ E. y ( y = B /\ E. z z = C ) ) <-> ( E. x x = A /\ E. y ( y = B /\ E. z z = C ) ) ) |
|
| 33 | 19.41v | |- ( E. y ( y = B /\ E. z z = C ) <-> ( E. y y = B /\ E. z z = C ) ) |
|
| 34 | 33 | anbi2i | |- ( ( E. x x = A /\ E. y ( y = B /\ E. z z = C ) ) <-> ( E. x x = A /\ ( E. y y = B /\ E. z z = C ) ) ) |
| 35 | 31 32 34 | 3bitri | |- ( E. x E. y E. z ( x = A /\ y = B /\ z = C ) <-> ( E. x x = A /\ ( E. y y = B /\ E. z z = C ) ) ) |
| 36 | 3anass | |- ( ( E. x x = A /\ E. y y = B /\ E. z z = C ) <-> ( E. x x = A /\ ( E. y y = B /\ E. z z = C ) ) ) |
|
| 37 | 35 36 | bitr4i | |- ( E. x E. y E. z ( x = A /\ y = B /\ z = C ) <-> ( E. x x = A /\ E. y y = B /\ E. z z = C ) ) |
| 38 | 30 37 | sylibr | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> E. x E. y E. z ( x = A /\ y = B /\ z = C ) ) |
| 39 | 38 | biantrurd | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( ps <-> ( E. x E. y E. z ( x = A /\ y = B /\ z = C ) /\ ps ) ) ) |
| 40 | 26 39 | bitr4id | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ps ) <-> ps ) ) |
| 41 | 40 | adantr | |- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ps ) <-> ps ) ) |
| 42 | 18 25 41 | 3bitr3d | |- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) |
| 43 | 42 | expcom | |- ( w = <. <. A , B >. , C >. -> ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) ) |
| 44 | 5 43 | vtocle | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) |
| 45 | 2 3 4 44 | syl3an | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) |