This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of existential quantifiers in a triple conjunction. (Contributed by NM, 9-Mar-1995) (Proof shortened by Andrew Salmon, 25-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3exdistr | |- ( E. x E. y E. z ( ph /\ ps /\ ch ) <-> E. x ( ph /\ E. y ( ps /\ E. z ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass | |- ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) ) |
|
| 2 | 1 | 2exbii | |- ( E. y E. z ( ph /\ ps /\ ch ) <-> E. y E. z ( ph /\ ( ps /\ ch ) ) ) |
| 3 | 19.42vv | |- ( E. y E. z ( ph /\ ( ps /\ ch ) ) <-> ( ph /\ E. y E. z ( ps /\ ch ) ) ) |
|
| 4 | exdistr | |- ( E. y E. z ( ps /\ ch ) <-> E. y ( ps /\ E. z ch ) ) |
|
| 5 | 4 | anbi2i | |- ( ( ph /\ E. y E. z ( ps /\ ch ) ) <-> ( ph /\ E. y ( ps /\ E. z ch ) ) ) |
| 6 | 2 3 5 | 3bitri | |- ( E. y E. z ( ph /\ ps /\ ch ) <-> ( ph /\ E. y ( ps /\ E. z ch ) ) ) |
| 7 | 6 | exbii | |- ( E. x E. y E. z ( ph /\ ps /\ ch ) <-> E. x ( ph /\ E. y ( ps /\ E. z ch ) ) ) |