This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of set exponentiation. ( A ^m B ) is the set of all functions that map from B to A . Definition 10.24 of Kunen p. 24. (Contributed by NM, 8-Dec-2003) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapvalg | |- ( ( A e. C /\ B e. D ) -> ( A ^m B ) = { f | f : B --> A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapex | |- ( ( B e. D /\ A e. C ) -> { f | f : B --> A } e. _V ) |
|
| 2 | 1 | ancoms | |- ( ( A e. C /\ B e. D ) -> { f | f : B --> A } e. _V ) |
| 3 | elex | |- ( A e. C -> A e. _V ) |
|
| 4 | elex | |- ( B e. D -> B e. _V ) |
|
| 5 | feq3 | |- ( x = A -> ( f : y --> x <-> f : y --> A ) ) |
|
| 6 | 5 | abbidv | |- ( x = A -> { f | f : y --> x } = { f | f : y --> A } ) |
| 7 | feq2 | |- ( y = B -> ( f : y --> A <-> f : B --> A ) ) |
|
| 8 | 7 | abbidv | |- ( y = B -> { f | f : y --> A } = { f | f : B --> A } ) |
| 9 | df-map | |- ^m = ( x e. _V , y e. _V |-> { f | f : y --> x } ) |
|
| 10 | 6 8 9 | ovmpog | |- ( ( A e. _V /\ B e. _V /\ { f | f : B --> A } e. _V ) -> ( A ^m B ) = { f | f : B --> A } ) |
| 11 | 10 | 3expia | |- ( ( A e. _V /\ B e. _V ) -> ( { f | f : B --> A } e. _V -> ( A ^m B ) = { f | f : B --> A } ) ) |
| 12 | 3 4 11 | syl2an | |- ( ( A e. C /\ B e. D ) -> ( { f | f : B --> A } e. _V -> ( A ^m B ) = { f | f : B --> A } ) ) |
| 13 | 2 12 | mpd | |- ( ( A e. C /\ B e. D ) -> ( A ^m B ) = { f | f : B --> A } ) |