This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzonlteqm1 | |- ( ( A e. ( 0 ..^ B ) /\ -. A < ( B - 1 ) ) -> A = ( B - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | |- 0 e. ZZ |
|
| 2 | elfzo0 | |- ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. NN /\ A < B ) ) |
|
| 3 | elnnuz | |- ( B e. NN <-> B e. ( ZZ>= ` 1 ) ) |
|
| 4 | 3 | biimpi | |- ( B e. NN -> B e. ( ZZ>= ` 1 ) ) |
| 5 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 6 | 5 | a1i | |- ( B e. NN -> ( 0 + 1 ) = 1 ) |
| 7 | 6 | fveq2d | |- ( B e. NN -> ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) ) |
| 8 | 4 7 | eleqtrrd | |- ( B e. NN -> B e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 9 | 8 | 3ad2ant2 | |- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> B e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 10 | 2 9 | sylbi | |- ( A e. ( 0 ..^ B ) -> B e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 11 | fzosplitsnm1 | |- ( ( 0 e. ZZ /\ B e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) |
|
| 12 | 1 10 11 | sylancr | |- ( A e. ( 0 ..^ B ) -> ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) |
| 13 | eleq2 | |- ( ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) -> ( A e. ( 0 ..^ B ) <-> A e. ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) ) |
|
| 14 | elun | |- ( A e. ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) <-> ( A e. ( 0 ..^ ( B - 1 ) ) \/ A e. { ( B - 1 ) } ) ) |
|
| 15 | elfzo0 | |- ( A e. ( 0 ..^ ( B - 1 ) ) <-> ( A e. NN0 /\ ( B - 1 ) e. NN /\ A < ( B - 1 ) ) ) |
|
| 16 | pm2.24 | |- ( A < ( B - 1 ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
|
| 17 | 16 | 3ad2ant3 | |- ( ( A e. NN0 /\ ( B - 1 ) e. NN /\ A < ( B - 1 ) ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
| 18 | 15 17 | sylbi | |- ( A e. ( 0 ..^ ( B - 1 ) ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
| 19 | elsni | |- ( A e. { ( B - 1 ) } -> A = ( B - 1 ) ) |
|
| 20 | 19 | a1d | |- ( A e. { ( B - 1 ) } -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
| 21 | 18 20 | jaoi | |- ( ( A e. ( 0 ..^ ( B - 1 ) ) \/ A e. { ( B - 1 ) } ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
| 22 | 14 21 | sylbi | |- ( A e. ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
| 23 | 13 22 | biimtrdi | |- ( ( 0 ..^ B ) = ( ( 0 ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) -> ( A e. ( 0 ..^ B ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) ) |
| 24 | 12 23 | mpcom | |- ( A e. ( 0 ..^ B ) -> ( -. A < ( B - 1 ) -> A = ( B - 1 ) ) ) |
| 25 | 24 | imp | |- ( ( A e. ( 0 ..^ B ) /\ -. A < ( B - 1 ) ) -> A = ( B - 1 ) ) |