This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzonlteqm1 | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ∧ ¬ 𝐴 < ( 𝐵 − 1 ) ) → 𝐴 = ( 𝐵 − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | elfzo0 | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ) | |
| 3 | elnnuz | ⊢ ( 𝐵 ∈ ℕ ↔ 𝐵 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 4 | 3 | biimpi | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ( ℤ≥ ‘ 1 ) ) |
| 5 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 6 | 5 | a1i | ⊢ ( 𝐵 ∈ ℕ → ( 0 + 1 ) = 1 ) |
| 7 | 6 | fveq2d | ⊢ ( 𝐵 ∈ ℕ → ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) ) |
| 8 | 4 7 | eleqtrrd | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
| 10 | 2 9 | sylbi | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐵 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
| 11 | fzosplitsnm1 | ⊢ ( ( 0 ∈ ℤ ∧ 𝐵 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( 0 ..^ 𝐵 ) = ( ( 0 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) } ) ) | |
| 12 | 1 10 11 | sylancr | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → ( 0 ..^ 𝐵 ) = ( ( 0 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) } ) ) |
| 13 | eleq2 | ⊢ ( ( 0 ..^ 𝐵 ) = ( ( 0 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) } ) → ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ 𝐴 ∈ ( ( 0 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) } ) ) ) | |
| 14 | elun | ⊢ ( 𝐴 ∈ ( ( 0 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) } ) ↔ ( 𝐴 ∈ ( 0 ..^ ( 𝐵 − 1 ) ) ∨ 𝐴 ∈ { ( 𝐵 − 1 ) } ) ) | |
| 15 | elfzo0 | ⊢ ( 𝐴 ∈ ( 0 ..^ ( 𝐵 − 1 ) ) ↔ ( 𝐴 ∈ ℕ0 ∧ ( 𝐵 − 1 ) ∈ ℕ ∧ 𝐴 < ( 𝐵 − 1 ) ) ) | |
| 16 | pm2.24 | ⊢ ( 𝐴 < ( 𝐵 − 1 ) → ( ¬ 𝐴 < ( 𝐵 − 1 ) → 𝐴 = ( 𝐵 − 1 ) ) ) | |
| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( 𝐵 − 1 ) ∈ ℕ ∧ 𝐴 < ( 𝐵 − 1 ) ) → ( ¬ 𝐴 < ( 𝐵 − 1 ) → 𝐴 = ( 𝐵 − 1 ) ) ) |
| 18 | 15 17 | sylbi | ⊢ ( 𝐴 ∈ ( 0 ..^ ( 𝐵 − 1 ) ) → ( ¬ 𝐴 < ( 𝐵 − 1 ) → 𝐴 = ( 𝐵 − 1 ) ) ) |
| 19 | elsni | ⊢ ( 𝐴 ∈ { ( 𝐵 − 1 ) } → 𝐴 = ( 𝐵 − 1 ) ) | |
| 20 | 19 | a1d | ⊢ ( 𝐴 ∈ { ( 𝐵 − 1 ) } → ( ¬ 𝐴 < ( 𝐵 − 1 ) → 𝐴 = ( 𝐵 − 1 ) ) ) |
| 21 | 18 20 | jaoi | ⊢ ( ( 𝐴 ∈ ( 0 ..^ ( 𝐵 − 1 ) ) ∨ 𝐴 ∈ { ( 𝐵 − 1 ) } ) → ( ¬ 𝐴 < ( 𝐵 − 1 ) → 𝐴 = ( 𝐵 − 1 ) ) ) |
| 22 | 14 21 | sylbi | ⊢ ( 𝐴 ∈ ( ( 0 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) } ) → ( ¬ 𝐴 < ( 𝐵 − 1 ) → 𝐴 = ( 𝐵 − 1 ) ) ) |
| 23 | 13 22 | biimtrdi | ⊢ ( ( 0 ..^ 𝐵 ) = ( ( 0 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) } ) → ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → ( ¬ 𝐴 < ( 𝐵 − 1 ) → 𝐴 = ( 𝐵 − 1 ) ) ) ) |
| 24 | 12 23 | mpcom | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → ( ¬ 𝐴 < ( 𝐵 − 1 ) → 𝐴 = ( 𝐵 − 1 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ∧ ¬ 𝐴 < ( 𝐵 − 1 ) ) → 𝐴 = ( 𝐵 − 1 ) ) |