This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an integer in an extended open range of integers, extension added to the right. (Contributed by AV, 30-Apr-2020) (Proof shortened by AV, 23-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzoext | |- ( ( Z e. ( M ..^ N ) /\ I e. NN0 ) -> Z e. ( M ..^ ( N + I ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoextl | |- ( ( Z e. ( M ..^ N ) /\ I e. NN0 ) -> Z e. ( M ..^ ( I + N ) ) ) |
|
| 2 | elfzoel2 | |- ( Z e. ( M ..^ N ) -> N e. ZZ ) |
|
| 3 | 2 | zcnd | |- ( Z e. ( M ..^ N ) -> N e. CC ) |
| 4 | 3 | adantr | |- ( ( Z e. ( M ..^ N ) /\ I e. NN0 ) -> N e. CC ) |
| 5 | nn0cn | |- ( I e. NN0 -> I e. CC ) |
|
| 6 | 5 | adantl | |- ( ( Z e. ( M ..^ N ) /\ I e. NN0 ) -> I e. CC ) |
| 7 | 4 6 | addcomd | |- ( ( Z e. ( M ..^ N ) /\ I e. NN0 ) -> ( N + I ) = ( I + N ) ) |
| 8 | 7 | oveq2d | |- ( ( Z e. ( M ..^ N ) /\ I e. NN0 ) -> ( M ..^ ( N + I ) ) = ( M ..^ ( I + N ) ) ) |
| 9 | 1 8 | eleqtrrd | |- ( ( Z e. ( M ..^ N ) /\ I e. NN0 ) -> Z e. ( M ..^ ( N + I ) ) ) |