This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that the coset of A and the coset of C have the common element B . (Contributed by Peter Mazsa, 15-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleccossin | |- ( ( B e. V /\ C e. W ) -> ( B e. ( [ A ] ,~ R i^i [ C ] ,~ R ) <-> ( A ,~ R B /\ B ,~ R C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( B e. ( [ A ] ,~ R i^i [ C ] ,~ R ) <-> ( B e. [ A ] ,~ R /\ B e. [ C ] ,~ R ) ) |
|
| 2 | relcoss | |- Rel ,~ R |
|
| 3 | relelec | |- ( Rel ,~ R -> ( B e. [ A ] ,~ R <-> A ,~ R B ) ) |
|
| 4 | 2 3 | ax-mp | |- ( B e. [ A ] ,~ R <-> A ,~ R B ) |
| 5 | relelec | |- ( Rel ,~ R -> ( B e. [ C ] ,~ R <-> C ,~ R B ) ) |
|
| 6 | 2 5 | ax-mp | |- ( B e. [ C ] ,~ R <-> C ,~ R B ) |
| 7 | 4 6 | anbi12i | |- ( ( B e. [ A ] ,~ R /\ B e. [ C ] ,~ R ) <-> ( A ,~ R B /\ C ,~ R B ) ) |
| 8 | 1 7 | bitri | |- ( B e. ( [ A ] ,~ R i^i [ C ] ,~ R ) <-> ( A ,~ R B /\ C ,~ R B ) ) |
| 9 | brcosscnvcoss | |- ( ( B e. V /\ C e. W ) -> ( B ,~ R C <-> C ,~ R B ) ) |
|
| 10 | 9 | anbi2d | |- ( ( B e. V /\ C e. W ) -> ( ( A ,~ R B /\ B ,~ R C ) <-> ( A ,~ R B /\ C ,~ R B ) ) ) |
| 11 | 8 10 | bitr4id | |- ( ( B e. V /\ C e. W ) -> ( B e. ( [ A ] ,~ R i^i [ C ] ,~ R ) <-> ( A ,~ R B /\ B ,~ R C ) ) ) |